1. How does ClO2 work?
ClO2 is an oxidizing biocide. It deactivates micro organisms by attacking and penetrating their cell wall, disrupting the transport of nutrients across the cell wall and inhibiting protein synthesis. Since this action occurs regardless of the metabolic state of the organism, oxidizing biocides are effective against dormant organisms and spores (Giardia Cysts and Poliovirus) also.
2. What are disinfection by-product of ClO2?
The DBPs of chlorine dioxide reactions are chlorite (ClO2-) and chlorate (ClO3-), and eventually chloride (Cl-). The fate of any disinfection by-products depends largely on the conditions at the time, such as concentration, temperature and the presence of other molecules.
Unlike ozone (O3), chlorine dioxide does not oxidise bromide (Br-) ions into bromate ions (BrO3-). Additionally, chlorine dioxide does not produce large amounts of aldehydes, ketones, or other disinfection by-products that originate from the ozonisation of organic substances.
3. Is ClO2 the same as chlorine products?
Although they have similar names and elements they are very dissimilar. The commonality of the name arises from the fact that they all contain the element chlorine, but their properties are quite different. Chlorine and Hypochlorite are very powerful oxidizing agents but more importantly their reaction with organic matter can lead to unacceptable concentrations of chlorinated organic compounds via substitution reactions. Some of these compounds such as the by-products of reactions with phenolic compounds are either odoriferous (such as 2, 6-dichlorophenol) or extremely carcinogenic like dioxin. Chlorine Dioxide on the other hand is incapable of causing such chemical transformations. Chlorine Dioxide is non-mutagenic, non-carcinogenic and relatively non-irritating unlike Chlorine and Hypochlorite.
4. Why Microorganism are unable to buildup resistance to ClO2?
When the cell wall is penetrated by chlorine dioxide, Organic substances within cells and on the surface of cell membranes react with chlorine dioxide, causing cell metabolism to be disrupted. Chlorine dioxide also reacts directly with amino acids and the RNA in the cell. This reaction is not dependent on reaction time or concentration. Unlike non-oxidizing disinfectants, chlorine dioxide kills microorganisms even when they are inactive. Microorganisms are unable to build up resistance to chlorine dioxide, in practical terms.
5. How can ClO2 remove biofilm?
Many biocides have particular problems in penetrating this biofilm, due to the polysaccharide “glue” that is secreted by the bacteria to hold the biofilm together. Unlike most biocides, chlorine dioxide can effectively penetrate biofilm to provide complete protection. Chlorine dioxide kills viruses by preventing protein formation. ClO2 reacts with peptone, a water-soluble substance that originates from hydrolysis of proteins to amino acids.
ClO2 is an oxidizing biocide. It deactivates micro organisms by attacking and penetrating their cell wall, disrupting the transport of nutrients across the cell wall and inhibiting protein synthesis. Since this action occurs regardless of the metabolic state of the organism, oxidizing biocides are effective against dormant organisms and spores (Giardia Cysts and Poliovirus) also.
2. What are disinfection by-product of ClO2?
The DBPs of chlorine dioxide reactions are chlorite (ClO2-) and chlorate (ClO3-), and eventually chloride (Cl-). The fate of any disinfection by-products depends largely on the conditions at the time, such as concentration, temperature and the presence of other molecules.
Unlike ozone (O3), chlorine dioxide does not oxidise bromide (Br-) ions into bromate ions (BrO3-). Additionally, chlorine dioxide does not produce large amounts of aldehydes, ketones, or other disinfection by-products that originate from the ozonisation of organic substances.
3. Is ClO2 the same as chlorine products?
Although they have similar names and elements they are very dissimilar. The commonality of the name arises from the fact that they all contain the element chlorine, but their properties are quite different. Chlorine and Hypochlorite are very powerful oxidizing agents but more importantly their reaction with organic matter can lead to unacceptable concentrations of chlorinated organic compounds via substitution reactions. Some of these compounds such as the by-products of reactions with phenolic compounds are either odoriferous (such as 2, 6-dichlorophenol) or extremely carcinogenic like dioxin. Chlorine Dioxide on the other hand is incapable of causing such chemical transformations. Chlorine Dioxide is non-mutagenic, non-carcinogenic and relatively non-irritating unlike Chlorine and Hypochlorite.
4. Why Microorganism are unable to buildup resistance to ClO2?
When the cell wall is penetrated by chlorine dioxide, Organic substances within cells and on the surface of cell membranes react with chlorine dioxide, causing cell metabolism to be disrupted. Chlorine dioxide also reacts directly with amino acids and the RNA in the cell. This reaction is not dependent on reaction time or concentration. Unlike non-oxidizing disinfectants, chlorine dioxide kills microorganisms even when they are inactive. Microorganisms are unable to build up resistance to chlorine dioxide, in practical terms.
5. How can ClO2 remove biofilm?
Many biocides have particular problems in penetrating this biofilm, due to the polysaccharide “glue” that is secreted by the bacteria to hold the biofilm together. Unlike most biocides, chlorine dioxide can effectively penetrate biofilm to provide complete protection. Chlorine dioxide kills viruses by preventing protein formation. ClO2 reacts with peptone, a water-soluble substance that originates from hydrolysis of proteins to amino acids.